Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/dsproglib/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение | Telegram Webview: dsproglib/6425 -
Telegram Group & Telegram Channel
📋 Чек-лист перед запуском ML-задачи через `sbatch`

Ваш минимальный набор проверок, чтобы не тратить GPU впустую и не ловить баги на 3-й час обучения:

Подготовка скрипта run_job.sh:
➡️ Указано имя задачи через #SBATCH --job-name=...

➡️ Настроены логи: --output=logs/%x_%j.out, --error=logs/%x_%j.err

➡️ Выбран нужный раздел: --partition=ml (или подходящий)

➡️ Указано количество ресурсов: --cpus-per-task=..., --mem=..., --gres=gpu:1

➡️ Прописан тайм-аут: --time=HH:MM:SS — не забудьте!

Среда и окружение:
➡️ Загружается нужный модуль (module load ...) или активируется conda

➡️ Все зависимости перечислены в requirements.txt или environment.yaml

➡️ Проверен путь к train.py и конфигам — абсолютный или относительный

Код:
➡️ Прописан фиксированный random seed (в reproducibility мы верим)

➡️ Есть логирование (хотя бы print/logging/wandb/MLflow)

➡️ Код протестирован локально или через srun с малым объемом данных

Безопасность и этика:
➡️ Нет утечки чувствительных данных

➡️ Модель прошла базовую проверку на адекватность и непредвзятость

Финальное:
➡️ Скрипт запускается через: sbatch run_job.sh

➡️ Вы проверяете статус: squeue -u $USER

➡️ При ошибке используете: scancel <jobid>

Если всё отмечено — можно запускать!

🙅‍♂️ Если хотя бы одно «нет» — лучше потратить ещё 5 минут, чем 5 часов GPU-времени впустую.

Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6425
Create:
Last Update:

📋 Чек-лист перед запуском ML-задачи через `sbatch`

Ваш минимальный набор проверок, чтобы не тратить GPU впустую и не ловить баги на 3-й час обучения:

Подготовка скрипта run_job.sh:
➡️ Указано имя задачи через #SBATCH --job-name=...

➡️ Настроены логи: --output=logs/%x_%j.out, --error=logs/%x_%j.err

➡️ Выбран нужный раздел: --partition=ml (или подходящий)

➡️ Указано количество ресурсов: --cpus-per-task=..., --mem=..., --gres=gpu:1

➡️ Прописан тайм-аут: --time=HH:MM:SS — не забудьте!

Среда и окружение:
➡️ Загружается нужный модуль (module load ...) или активируется conda

➡️ Все зависимости перечислены в requirements.txt или environment.yaml

➡️ Проверен путь к train.py и конфигам — абсолютный или относительный

Код:
➡️ Прописан фиксированный random seed (в reproducibility мы верим)

➡️ Есть логирование (хотя бы print/logging/wandb/MLflow)

➡️ Код протестирован локально или через srun с малым объемом данных

Безопасность и этика:
➡️ Нет утечки чувствительных данных

➡️ Модель прошла базовую проверку на адекватность и непредвзятость

Финальное:
➡️ Скрипт запускается через: sbatch run_job.sh

➡️ Вы проверяете статус: squeue -u $USER

➡️ При ошибке используете: scancel <jobid>

Если всё отмечено — можно запускать!

🙅‍♂️ Если хотя бы одно «нет» — лучше потратить ещё 5 минут, чем 5 часов GPU-времени впустую.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6425

View MORE
Open in Telegram


Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

A project of our size needs at least a few hundred million dollars per year to keep going,” Mr. Durov wrote in his public channel on Telegram late last year. “While doing that, we will remain independent and stay true to our values, redefining how a tech company should operate.

Tata Power whose core business is to generate, transmit and distribute electricity has made no money to investors in the last one decade. That is a big blunder considering it is one of the largest power generation companies in the country. One of the reasons is the company's huge debt levels which stood at ₹43,559 crore at the end of March 2021 compared to the company’s market capitalisation of ₹44,447 crore.

Библиотека data scientist’а | Data Science Machine learning анализ данных машинное обучение from sg


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA